Dr. Rajendra Prasad Central Agricultural University
Pusa, Samastipur – 848 125, Bihar, India

" AN INSTITUTION OF NATIONAL IMPORTANCE, GOVERNMENT OF INDIA "

Estimation of Timber Biomass

Estimation of Timber Biomass

 


Name of Model Functional form Parameter estimates R^2

a b c p q

Allometric Y = a × Xb 1.79 1.25 0.99
Logistic Y = a/1 + exp (p – b × X) -261.01 -0.01 5.54 0.99
Chapman Y = a × [1 – exp (-b × X)[1/(1 – c)] 4510.04 0.0021 0.2249 0.99
Gompertz Y = a × exp (-b exp (-q × X) 300.21 3.84 0.050 0.99
Linear Y = a + b × X -11.923 4.717 0.99

 

Where,

Y= Total biomass and X= Diameter at breast height (i.e. at the height of 1.37 m from the base of the tree)

 

Timber Volume Regression Equations for Multipurpose Tree Species


S.No. Tree species Regression Equations (V = a+bD) Regression coefficient (r)
1. Arjun (Terminalia arjuna) V = -4.96 + 0.16 DV = -0.029 – 10.61 D^2H r = 0.96r = 0.99
2. Mahogony (Swietenia mahagony) V = -0.37 + 0.073 DV = -1.91 – 10.610 D^2H r = 0.98r = 0.99
3. White siris (Albizia procera) V = -6.77 + 0.21 DV =   2.87 + 0.35 D^2H r = 0.96r = 0.66
4. Safeda (Eucalyptus tereticornis) V = -2.64 + 0.138 DV = -0.32 + 0.66 D^2H r = 0.97r = 0.98
5. Shisham (Dalbergia sissoo) V = -1.17 + 0.068 DV = -2.79 + 0.610 D^2H r = 0.97r = 0.99
6. Karanj (Pongamea  pinnata) V = -1.54 + 0.080 DV = -0.207 + 0.610 D^2H r = 0.95r = 0.99
7. Chah (Acacia lenticularis) V = -1.808 + 0.104 DV = 0.0011 + 0.610 D^2H r = 0.98r = 0.99
8. Teak (Tectona grandis) V = -1.31 + 0.074 DV =   0.010 + 0.600 D^2H r = 0.90r = 0.99
9. Chakundi (Cassia siamea) V = -2.21 + 0.101 DV = -0.0055 + 0.61 D^2H r = 0.92r = 0.99

 

Where,

V = Timber volume, D = Diameter at breast height (i.e. at the height of 1.37 m from the base of the tree) and H = Height of the tree

Skip to content